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Contributor Okay I guess we should — we should get going. So we have on — we have today to discuss
some unfortunately rather formal stuff and tomorrow we will do something that’s physically more
interesting, the Einstein Podolsky Rosen experiment but which will draw heavily on what we’re
going to do today. So what we want to do today is face up to the fact that many of the systems
that we want to apply quantum mechanics to come in parts. So for example the hydrogen atom
consists of an electron and a proton and to know the state of the hydrogen atom you want to know
the state of the electron and you want to know the state of the proton both.

A diamond consists of on the order of — so condensed metaphysics is about things like
diamonds which a diamond would contain 10 to the 23 or whatever carbon atoms. And to know
the state of the diamond officially you would need to know the state of the 10 to the 23 carbon
atoms. So it’s going to be important to move forward towards applying quantum mechanics to
any non trivial really interesting system we’re going to have to learn how to describe systems that
come in parts. And this turns out to be — quantum mechanics has its own way of doing this which
is actually very elegant and powerful but leads to some surprising results.

The hydrogen, in a hydrogen atom the electron of course is strongly interacting with the
proton. It is electro statically attracted towards the proton and in a carbon atom — sorry in a
diamond the carbon atoms are obviously very tightly coupled to each other by covalent bonds or
whatever. So there’s a — there are springs as it were. There are things connecting the different
parts. But it turns out that the quantum mechanics of a system made up of two objects is non
trivially, is non trivially different from the quantum mechanics of the two isolated things even if
you just logically consider them to be the same. So when we do angular momentum we will — in
the coming weeks — we will find that very strange and interesting results arise just because we put
two gyroscopes in a box with no physical connection between the two of them and start asking
questions about what’s the angular momentum of the box as opposed to what is the case of the
individual gyros?

So knowing the state of the well defined states of the box turns out to be very different
from knowing well defined states of the individual gyros. So there’s a — what we’re talking about
today is putting things logically together to make compound systems and there may or may not
be springs connecting, physically connecting these things. Alright...
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So the central problem of the — the central thing we have to address is if we have a system A and
a system B. So we have two distinct systems and this one lets say has states IA. Alright, so this
indicates which system we’re talking about then there’s supposed to be a semi colon here and
there’s an index here which tells us which of this system states we’re addressing. And we have a
system B and it will have states something like this. And what we want to know is so how are
we supposed to write the states of the compound system, the system that you get by considering
A and B together. So this might be the electron, this might be the proton what’s the state of the
compound system which we call a hydrogen atom for example?

Alright, because if we know how to add — if we know how to compound a, system A with
system B to make a combined system we can compound another one — we can use the same
rule to add another element of a bigger system A, B, C and so on and so forth. And we can
do — eventually we can build up a diamond of 10 to the 23 carbon atoms. The central, once
you know how to add two systems by repeating this process adding more and more systems
you can put any number of systems together. So this is the central problem that we have to address.

So the states — what we — first of all we just write some formal stuff: the states of the
compound system AB. This is when you logically think of the system at A with B as one system
are of — well some of the states of the system AB are written like this AB semi colon I J and we
write it symbolically as A semi colon — whoops — I B semi colon J. Sorry the semi colon and the
J look too similar.

So what is this? Let’s just ask ourselves what does this mean? This means the state of the
compound system where the state A — where the subsystem A is in its ‘I’ state and the subsystem
B is in its J state. Right, so this is — we know, we have to know what this means and I think we do
know what this means I’ve just given words that say — give meaning to that. And on the right hand
side we have a symbolic multiplication and we don’t need to worry too much you’ll see as we
go on that we don’t need to worry too much about what exactly we mean by this multiplication.
But this is just a symbolic product of — efficiently it’s tenser product but we don’t want to frighten
everybody. This is a symbolic multiplication of a ket on a ket — alright? We’ll find out how to
interpret that as we go along.

Then we will obviously we can have the bras — there must be associated bras since this is
a state of a system it has a bra which will be I J — whoops — is equal to of course the logical
product of the bras. And we give meaning to this thing by explaining what happens when this
goes on to this. So when this goes on to this we should get a complex number so I — to give
meaning to all this I need to explain what this is I primed J primed on AB AB semi colon I J is
equal to. Right, so we need to give — this should be a complex number to give meaning to all this
real-, hocus pocus I need to explain which complex number.

The complex number it is this complex number AI primed Al times BJ primed BJ. So
what I’ve written on the right makes perfectly, is completely well defined because this is a
complex number and this is a complex number and we can multiply complex numbers. And we
get a complex number which gives meaning to this on the left. And that’s really, really, really
the — all we... That’s the essence of giving meaning to this thing here because remember we
only want these kets all we want with kets is in order to calculate amplitudes which — whose
mod squares are going to be the probabilities for some — give us our predictions. So as long as
you know how to get amplitude out of a ket you know enough about the ket to get on with it. Right?

So we’ve given meaning to the process by which we extract amplitudes out of kets which
is this brahing through business, because that leads to the experimental predictions which are
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the whole point of the theory. Okay why is this — why does this make sense? Why is this, is a
sensible definition, right. So this is a definition of what we mean by these animals. Why is it a
sensible definition? Well it says that the probability of getting — of measuring the results I primed
and J primed given that we’re in this state is equal to obviously the mod square of this horrible
thing ABI primed J primed ABIJ mod square, right. That’s how we would interpret this complex
number. And according to this formula this is equal to the product of the probability associated
— this is the probability for the system AB — the probability of system A of getting the result I
primed times the probability of getting the result J primed.

Right, because if I take the mod square of both sides, the mod square of this product is
the product of the mod squares. The mod squares on this side by definition are these probabilities
that... So the probability — this says the probability that if I'm — take measurements on my
combined system I find that A is in the I primed state and J is in the — B is in the J primed state is
simply the product of the... It should be the product of the probabilities that the A system is in
the I primed state and the B system is in the J primed stated if you make individual measurements.

So that makes perfect sense and it’s motivating — this is why we write the ket of the compound
system like this. This multiplication rule, this symbolic multiplication is inherited from this
law for multiplying probabilities in probability theory, okay. Now that, having said that and
everything’s nice and simple we have to make the point that — and now I want to show not all
states — this is the thing that’s surprising of AB are of the form AB. That’s what — I want now to
establish that this is — that it’s not true that all states of the system are of this form.

Okay so let’s, so for example consider two state systems. So we’re going to do a concrete
example to illustrate this general and very fundamental principle. We’re going to have two two
state systems. We’re going to have A who’s going to have states plus and minus, these are a
complete set. So we’re considering the simplest non trivial example and B is going to have the
states up and down, alright. This is just notation that enables us to — by using a plus sign and a
minus sign for A and an up arrow and a down arrow for B I avoid the necessity of writing down
these pesty AB labels, right.

Let’s now consider. Let the state of A B A plus plus A minus minus — so this is a general
state, okay. By taking a linear combination of the two bases vectors of my two bases states in my
two state system I write down a general state by choosing these amplitudes to be whatever you
like you can make any state of A whatsoever. And let the state of B similarly be B up up plus B
down of down. Then what’s the state — now let’s have a look at the state AB, the state of AB that
we get. Well it’s going to be this thing bracketed into this thing A plus plus plus A minus minus.
B plus plus plus B — oops sorry, sorry — this has the up and the down states. B subscript down ket
down. And when you multiply this out you get a disgusting mess, right because you get A plus
plus — sorry, sorry. A plus B up of plus up plus A plus B down of plus and down plus A minus B
up of minus and up. Plus A minus B down of minus and down.

So my — so this state is now along, it’s now a linear combination of four states and it’s —
this is strongly suggesting that these four states are bases states for the compound system and
indeed we will show that they are times amplitudes which are these products of those individual
amplitudes. And these amplitudes have well defined meanings, right. So for example A minus B
plus is the amplitude that A will be found minus and B — what did I say? Up. So take the mod
square of this you get the probability that the experiment to measure As property and Bs property
will be these particular values.

But what I’'m trying to show is that this state is not the most general state, okay. And the
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way I’m going to do that is I'm going to calculate the probability that B — may be you should do
this the same way I’ve got it here. That B is up given that A is in the plus state, alright. So this is
the kind of — so if — this is a reasonable question. We’ve measured and found that A is up and I
now want to know okay so suppose I measure B’s property will I — sorry I found that A is plus —
will I find that B’s property is up or down. This is going to be the probability that given that I am
where I am B will be found to be up.

Okay well this is equal to the probability simply that we have up and the probability for
being up and plus over the probability that A is plus. Now why is that? If I would move this
here then this would say that the probability of being up and plus is the probability of being plus
times the probability that we get up given that we have plus. This is a very important result from
statistics. This is classical probability theory this is known as Bays Theorem. But it’s really a
trivial rearrangement of the rule for multiplying probabilities. The probability to be up and plus
is the probability for being plus times the probability if you are plus that you’re up. So this is
nothing to do with quantum mechanics this is just a rule of probability theory which now plays a
very important role in statistical inference in all the sciences physical and social.

Alright so what is that? That’s the probability that we’re up and plus over the probabl-,
this is the — having plus on A comes in — we can have plus in A in two ways with a competent
system. We can have it either with B down or B up and they’re mutually exclusive events so I can
add their probabilities. So this probability on the bottom is P up plus plus P down plus.

So what is this? This is equal to 1 over dividing through 1 plus P down plus over P up
plus. What about this? Let’s go back to that expression up there. What’s this probability? What’s
this probability in terms of those amplitudes? P down plus, P down whoops — down and plus is
equal to A plus B down. And P up plus going up there, P up plus is A plus B up. So these A
pluses cancel — oh and we need to take the mod square of this whole of course, right. But these —
the crucial thing is those things cancel so this is in fact equal to B down plus — sorry this is equal
to B, this ratio.

So what’s the point? The point is that this probability is actually — we’ve just shown it’s
independent of A plus and A minus. So this probability does not depend on the state of A.
What does that mean physically, historically? It means that the systems are not correlated. I've
just calculated one specific conditional probability but you could calculate any other conditional
probability and you’d find the same thing. That the probability of any state of B is independent
of what you assume about — what the result of measuring A and so on. These are uncorrelated
systems.

So what we conclude from this is that when the state of AB is a product of a state of A
times the state of B the systems are uncorrelated. And that’s an important physical assumption.
Now, for example, if you have a hydrogen atom is the location of the proton correlated with the
location of the electron? Well of course it is because if the hydrogen atom is here you can be
pretty damn certain the electron lies within a few nanometres or if you — within a manometer of
the proton. If the proton’s over here you can be pretty sure that the electron is within a nanometre
of the proton. It’s over here. The electron and the proton are very strongly correlated because
they’re — you know they’re physics. There’s a piece of Hamiltonian which is correlating them.

So we don’t, yes. So we do expect systems to be correlated and that means we do not
expect systems in general to have wave functions that look like — to have states that look like that.
So let me see, the point is that the — I’'m not going to go through the demonstration I think that I
said — let’s go back up some way. Let’s go back to here. So if these objects form a complete set
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of states of A and these objects form a complete set of states for B then it’s not hard to persuade
yourself that — sorry that these objects form a complete set for AB, alright? So this is a complete
set if these complete for their respective subsystems.

Now what’s this telling us? This is telling us that any state of the system including correlated
states which as I've tried to argue are natural states, states in which the two subsystems are
correlated they must be writable as linear combinations of these objects. So the conclusion here
is — let’s put that back and start over here. So any state of AB can be written as AB equals the
sum CIJ summed over I, summed over J of states A I B J. These states are described uncorrelated,
states in which the two subsystems are uncorrelated. But this may be correlated, probably is
correlated. So the way quantum mechanics introduces correlations between subsystems is by
taking linear combinations of uncorrelated states.

We just had such a linear combination of uncorrelated states here, right. And it turned out
that in this case that was still an uncorrelated state because this was simply an expansion in terms
of some bases states of a state which was already a product of just two states. So the point is that
the general state cannot be written. This thing in general cannot be written like that even though
when you see a long list of bases states it may, you know, with certain complex numbers in front,
it may be that the state can be written thus.

So whether this thing can be written as a product of two separate states depends on these
numbers. Now we haven’t got time to go in to what property it is of these numbers which
ensures that you can do a decomposition like this into uncorrelated states, which makes this state
uncorrelated. And when these are correlated but you can find a complete account of it in the book.
There are I think some — and there are problems investigating this. But the point is that if you —
in this concrete example here, right. This is one of the Cs, this is another of the Cs, another of
the Cs, another of the Cs and these Cs are not general. They have the property, you could arrange
those in a two by two array of objects and if you — this matrix of — this two by two matrix is a
sort of a degenerate matrix. It’s a special matrix it’s not the general one that you get by making —
choosing these numbers independently.

So correlations go in like that. And in quantum mechanics when you say that two states —
two systems are correlated you actually usually use the word ‘entangled’. Entangled is just the
same thing it’s just quantum mechanical jargon for correlated. And it — what it means is if a
compound system or two subsystems are entangled it means the state of the compound system
cannot be written in that form. It has to be written in this form and these numbers do not have the
property that requires them that they have to have to enable them to be expressed as products of
individual, amplitudes for the individual systems.

So let’s do a little bit of quick counting. Suppose there are M bases states of A and N of
B. Alright so there are M values that I can take and there N values that J can take. So then they’ll
be M times N amplitudes CIJ. So to specify a general state of the system you need to specify MN
numbers — CIJ. To specify a state but to specify A you need just M numbers Al. And to specify
B you need N amplitudes BJ so to specify a general state of the form AB you need M plus N
amplitudes. So M plus N is generally much less than MN.

If we’re two... In this little example M was 2 and N was 2 so this number was 4 and this
number was 4. But supposing — so they’re the same. But supposing that this number was 8 and
this number was 8 then this would be 16 and that would be 64. So usually you — most systems
are not two state systems, usually. So there’s much — what this is telling us is that in a general
state of the system there’s very much more information than there is in here. And why is that?
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Because to specify a general state of the system you have to specify all the correlations between
the subsystems. And there are a lot of possible correlations.

This is not a problem only for quantum mechanics. This would be a problem if we were
doing statistical physics, classical statistical physics. Correlations are nothing to do, I mean
not directly to do with quantum mechanics they’re a logical problem that arises in all statistical
inference. Also in the classical world. And correlations are very hard to handle in classical
probability theory they’re actually easier in this apparatus here because quantum mechanics pulls
this amazing trick.

Correlated states of the system are obtained — are understood as quantum interference.
Right a sum like this is a quantum interference between uncorrelated states of the system.
When you’re doing classical probability theory you aren’t able to pull that trick and it’s much
harder to specify correlations. So correlations are important in both the classical world and the
quantum world. But they’re actually easier to handle in the quantum world than the classical
world because of the strange way in which quantum mechanics compounds these amplitudes,
does this quantum interference. So quantum interference is how quantum mechanics handles
correlations and because it has its own completely unique way of handling correlations the results
can be surprising, right. They can be ones that raise eyebrows and the Einstein Podolsky Rosen
experiment is an example.

Let’s try and pin these ideas a bit by looking at a concrete example of the H atom. So in
the position representation what do we want to know? A complete set of amplitudes are going
to be things like X. So this is — so let’s make this the electron wave function. And we’re going
to have also — so we’ll call this XE therefore and we will have XP times a big U. This will be a
proton wave function. Right, which gives you the amplitude to find the proton at the point XP,
this gives you the amplitude to find the electron at the point XE. And supposing these things have
subscripts on them UI and UJ. So this might be the amplitude to find the electron at the point
XE given — so this might be a UI given that the energy of the electron is EI. And this might be
the amplitude to find the proton somewhere given that the proton’s energy is EJ, say, right. Then
what is the state of the H atom would be — sorry — XP.

So what is this? This is A’s state of the hydrogen atom in which the proton has this energy, the
electron has this energy and that gives me a state of the logically coupled pair of proton and
electron. This as I say is not going to be very realistic state of the hydrogen atom because it’s
going to give us — this is going to give — this says that the electron and the proton are uncorrelated
and I've just tried to persuade you that the electron and the proton are very strongly correlated
consequently their wave functions can’t — this isn’t going to be a realistic useful wave function
for hydrogen atoms as found in the Lab.

So what do we have to do? A more realistic state might be XE XP shall we say Ki for a
new label which would be sum sum CIJ of XE UI XP big U J. But what are these? This is a
boring function of X with a label I. There’s a set of functions of XE which have labels I in return
complex values and then this complex number is multiplied on this complex number which is a
function of XP. A member of a family of functions with labels J. Here is an amplitude, another
complex number. Add all these complex number together and you get this complex number and
this. So any state of a hydrogen atom must be writable like this but realistic states are not writable
like that because of this correlation of the proton and the electron.

Okay now we need to revisit collapse, whoops — of wave function — function. So what
happens when we make measurements on compound systems? The — we know that when we
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make measurements — what happens when we make measurements on a single system and we
have to extend these ideas. So suppose let’s go back to our state of our system so we go back to
the two states system, two two states system A and B. And consider this particular state — up si
which is equal to A times plus up plus minus brackets B up plus C down. Supposing this is what
we have. This is pretty much written down at random. It is a well defined state of the system
because it’s a sum of three of the four bases states that we were discussing, right. It’s the sum of
plus up, minus up and minus down. This is the amplitude that if you would measure A and you
would measure B you’d find that A was plus and B was up. This is the amplitude for finding that
A is minus and B is up etc.

But — I've written this. But this one down — this state is at it turns out entangled. That is
to say you won’t be able to write this as a product of a state A and a state B. So this is more
realistic than the states that I was discussing before, okay. Okay now suppose we measure — SO
let’s measure state — this is subsystem A. If we get plus then after measurement the theory says —
right the dogma is — I’'m not going to justify this I’m stating this as a conjecture that the state of
the system is now goes to up si primed which is equal to plus up. So how does the system — let’s
just remind ourselves what collapse of wave function was all about in the one state system — in
the one single system sorry.

If we had a single system we wrote up si was equal to the sum AN — let us say EN for
example and we measured E and got the answer EM then up si went to the state M. Alright, after
the measurement it was in this state. So by making — I’m stating that in this more complicated
scenario where we have a two — we have a composite system we measure only one of the
subsystems we get a certain answer it goes to that state which is consistent of what we had over
there because we found the answer plus — so we threw away everything times minus but the. ..
Whereas over there it’s simply M the co efficient up there of plus was not just a complex number
A which was given me the probability it was also times this state of B. And this state of B just
gets copied down.

So what does this say? This — so this is what the theory claims is that that goes to that. It
doesn’t explain how this happens, this is the problem of measurement. But there’s a physical
implication of this which is that you’re now a measurement of B is guaranteed to produce or to
find up, alright. Because this thing is something times up there is now zero amplitude to find
down. You’re certain not to find down you’re certain to find up. Even — right. If, on the other
hand, we get minus for A then the new state is equal to minus — sorry, sorry the new state is
equal to, yes — minus brackets B up plus C down property normalised so over the square route
of B squared plus C squared. So this is what the theory claims that if you get the minus thing
then your new state is essentially the co efficient of minus and minus itself all properly normalised.

And now, so if we get minus there is now uncertainty as to what the result of a measurement on
B will be. So it’s — so now measurement of B yields for example up with probability B squared
over the square route of B squared plus C squared. So we now apply the same old rules about
the probability of measuring — about the interpretation of the amplitudes right. Because we
are certain to get minus if we measure A again but if we measure B we can get two outcomes
either up or down and the probabilities are like that. So that’s a conjecture, that’s a statement, a
theoretical statement about how the interpretation of the theory works and we just have to accept
it and see whether it leads to proper experimental predictions.

So in our last minutes we have unfortunately a big topic to discuss which is operators for

composite systems. So we’ve talked exclusively so far about the kets but we know that operators
play a very important role with every measurable quantity there’s going to be an operator and we
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need to know how this behaves. So we found that the kets of the subsystems were multiplied. This
rule was inherited from the multiplication of probabilities of successive events. The operators
add. So for example if we have two three particles if A and B are both three particles then
HA is equal to PA squared the momentum of A squared over twice the mass of A. and HB,
the Hamiltonian operator is equal to PB squared over 2 MB. So what’s the Hamiltonian of the
combined system HAB is equal to HA plus HB. In other words it’s PA squared over 2 MA plus
PB squared over 2 MB. And that’s sort of saying the energies of the combined system is the sum
of the energies of the individual bits.

How does the operator P — we now need to explain how an operator PA operates on one
of these states here, okay. So when PA hits AIBJ what we have — so this is a state of the combined
system and this is an operator which has to operate on the state of the combined system. And
what does it do? It produces PA operating on Al which is a well defined state of A symbolically
times BJ. If PB works on this thing it — PB ignores this. It passes through this as if PB was just
an ordinary complex number and homes in on this, its target. So this is simply Al times PB BJ.
This is a well defined state of B — gets to be symbolically multiplied by this well defined state of
A and there you are.

So for example what would the expectation value AB 1J of H ABB in this case here?
Let’s just make sure that we get some sense out of this. Sorry AB 1J. So what does that mean?
That means Al BI — sorry J, BJ brackets HA plus HB close brackets Al BJ. So this operator
ignores that because it’s a B operator and homes in on that. This operator operates on this and
then we have the other things come in on the other side and this gives me Al P, sorry HA Al BJ
BJ plus — so that comes from this, this and this. Because that passes through this A operator as if
it was just — this was just a number and bangs into that. Plus correspondingly we’re going to have
Al AI BJ HB BJ.

This of course is going to be the number 1. This is going to be EA — the expectation
value of the energy of A. This is the number 1 and this is the expectation value of B. So we find
that the expectation value of the energy of the combined system is lo and behold the sum of the
energy to the individual bits. I think that makes physical sense.

If it makes — that makes physical sense when the Hamiltonian takes that simple form. If
it’s just the sum of the individual bits but for example for hydrogen the Hamiltonian H is equal
to P electron squared over 2 mass of electron plus P proton squared over 2 the mass of a proton
minus the charge on the electron squared over 4 Pi epsilon nought X electron minus X proton in
modulus. Alright because the energy of the hydrogen atom is the sum of the kinetic energy of the
electron and the kinetic energy of the proton and an interaction energy of the two. Right because
they electro statically attract each other.

So this is equal to a H electron plus H proton — these being the Hamiltonians of the three
electron and the three proton plus an interaction Hamiltonian. And the thing about this interaction
Hamiltonian is that it depends on operators belonging both to the first subsystem and the second
subsystem. And the consequence of that is that HE comma H interaction commutator is not equal
to nought. Because the PE, the electron momentum operator sitting inside here has a bone to pick
with the electron position sitting inside here. And similarly of course HP comma H interaction is
not equal to zero.

So without that interaction we would have that the — so what’s the important point about

this is that the Hamiltonian of the hydrogen atom does not commute with the Hamiltonians of the
electron and the proton. You cannot know the energy so generically you do not expect to be able
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to know the energy of the hydrogen atom if you know the energy of the electron because they
don’t commute. And it’s the interaction that stops them computing.

Well we’re going to have to stop unfortunately at that point but we’re pretty nearly done.
I’ll just write down one final statement which is that the operators of different subsystems always
commute. Right, so for example, P proton comma X electron is precisely nothing etc. We do not
have to worry about non vanishing commutators of operators that belong to different subsystems.

Okay.
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