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Contributor Angular momentum is enormously important in physics. For example it’s central to
all kinds of scattering experiments and scattering experiments are at - lie at the core of high
energy physics. They play a very big role in condensed matter physics. Angular momentum
plays a central role in the theory of the application of quantum mechanics to atoms to get atomic
structure. So from the very beginning of the subject it played a very big role. And people write
whole books, horrifically, they write whole books on angular momentum in quantum mechanics.

So we are going to have to spend a few lectures on it even though we won’t – there won’t
be quite as much physical content. We’re building foundations for later work is what I suppose
I should be saying. But we will on Wednesday in the next lecture we will at least be able to do
something interesting and useful with angular momentum so the outlook is not entirely bleak but
I’m afraid today’s lecture is a bit on the formal side.

So you will recall I hope at the end of last term we talked about – we talked about operators that
generated translations. They turned out to be the momentum operators and we concluded that
there must be operators that effect rotations. So there must be a unitary operator U of alpha which
generates the state like the state you’ve already got. That generates the state – that’s the same as
the system you’ve already got except rotated by an angle mod alpha around the unit vector in the
direction of alpha, right. There must be some unitary operator like this.

This is a unitary operator depending on a continuous parameter right you can either, you
can shrink the angle of your rotation down to nothing continuously it’s in that class of continuous
of unitary operators. So it’s generated – we can write it’s the exponential of something or other by
putting an I in there this thing becomes the hermitian operator. These J’s – so and because there
are three components of this vector alpha which describes the rotation that you’re planning there
must be three of these operators that generate these rotations and we’re calling them of course
GX, JY and JZ. I claimed – I said that they are the angular momentum operators but we haven’t
really done a great deal. We didn’t do a great deal of that time to justify this claim.

Okay so we have those three operators they’re the generators of rotations respectively round
the X axis, the Y axis and the Z axis. Out of them because they’re hermitian operators we can
construct another operator called J squared as the sum of the squares of the operators and we have
a set of four operators and we showed by considering what happens when you make rotations
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018 Angular Momentum

around different axis we demonstrated that these operators must have the commutation relations
that J squared commutes with every – with all of them with all of JX, JY and JZ. And that these
operators do not strangely commute with each other they have the commutation relations that
JX, JY is IJZ and similar things which can be encapsulated in this way where [[epsilon
0:03:18]] and IJK is the object that keeps changing its sign. And is zero if any 2 of its
subscripts are identical.

So what we want to do now. So that sort of showed the existence of these things. What
we have to do in the next section is find out more about these operators and the eigen states of
these operators. We need to justify the claim that these operators really are the angular momentum
operators. We need to find crucially well it will turn out that the orientation of something like an
electron, well indeed the orientation of any quantum system is encoded in the amplitudes to find
the possible results, the possible eigen values when you make a measurement of JX, JY or JZ
you will – there will be possible answers. There will be – you’ll get a number which is – belongs
to the spectrum of that and the amplitude for that event strangely encodes the orientation of the
object, right. And we need to understand about that.

So what we want to know now really is what is the spectrum of these operators. You want
to know what are the possible results of measuring J squared or JX squared or JZ squared or
whatever, right. So this is what the next spectrum is about it’s about the spectrum of J squared et al
these operators. So since the JX, JY and JZ don’t commute with each other there isn’t a complete
set of mutual Liedenkets of JX, JY and JZ. But there is a complete mutual set of Idenkets because
of that commutation relation because J squared commutes with all of its subordinates. There is a
complete set of mutual idenkets of J squared and any one of those and its conventional to study –
to pick just at random that we choose to have mutual idenkets, J squared and JZ.

So it’s just a convention that we choose JZ out of the three things connected to the fact
that Z is the singular axis is the special axis in systems of spherical polar coordinates, alright. So
in spherical polar coordinates X and Y have pretty much the same role in life but Z axis is special
and that’s why we choose this one, okay. So that’s what we’re going to do. So we’re going to
say “Look there must be some idenkets.” We’re going to label them by B to M. This is label is
going to tell us how the thing responds to this operator concrete it’s going to be this, alright. So
obviously we’re labelling the ket by it’s eigen value with respect to J squared and JZ – oops JZ on
B to M is going to be M B to M.

So the second label in this thing tells you how it responds to JZ. This is by definition a
member of the complete set of mutual idenkets of this operator and this operator which the
mathematicians have promised us exists, okay. Now we introduce some ladder operators we’re
going to follow a line of reasoning that’s very similar to how we got the eigen values of the
Hamiltonian of a simple harmonic oscillator. We’re going to introduce J plus as JX plus I JY.

So this is a little bit analogous to when we introduced in the simple harmonic oscillator
the destruction operator we said that A was equal to X plus IP. Similar again so because of this I
this is not hermitian, it’s not an observable, it’s a tool of the trade. And correspondingly needless
to say we have J minus which is equal to JX minus I JY and we also have that J plus dagger is
equal to J minus, alright. So this thing here is the hermitian adjoint of that thing there because if
you take the dagger of this equation this dagger goes into this because it’s an observable. That
goes to minus I and this goes into this. So these are tools of the trade.

Now we find what – now we ask ourselves what are the commutation relations. We have
that J squared on J plus is nothing but J squared, JX plus I J squared, JY is nothing because this
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vanishes and this vanishes, right. So J squared commutes with J plus and of course it commutes
with J minus as well, right, so this is plus or minus it vanishes. What does that tell us? That tells
us that if you’ve got – if you take J plus of beta M you use this non travil operator on this state,
you get some other state. What can we say about this other state well one thing we can say is that
J squared applied to it because you can swap these two over is the same as J plus beta, beta M. So
you swap these two over then J squared looks at this and says aha that’s my identiket out pops a
beta. This is a mere number can be popped over here is equal to beta J plus beta M.

So when you use J plus on this eigen state of J squared you get another eigen state of J
squared for the same eigen value, right. Encouraged by that the next thing to do is to have a look
at JZ on J plus beta M. Now when we swap these two over well we want to swap the two over but
of course we can’t so we do the usual business J plus, JZ I’ve swapped them over and then add in
what we should have and take away what we’re not entitled to JZ, J plus commutator brackets,
brackets beta M.

Now this we found what this thing was. We found that. . . oops sorry we didn’t, we didn’t
sorry. . . I’m getting ahead of myself apologies. Right so I mean that’s all we need to. Okay well
we’re going to find out what this is, we’re going to find out what this is that’s the next thing we
have to do. Alright, so what is JZ, J plus. Well it’s JZ, JX plus I JZ, JY. This is minus I JY from
the rule given way up there and this is minus I so this is going to be I, this I minus coming up
another I J X. Again from the rule above. So this is going to be minus, sorry this is going to be
J plus because this is – these two I’s are going to make a minus sign, cancel this, we’re going to
have JX – it has to be plus.

So what the hell’s gone wrong here is I’ve goofed presumably in that XY – yes I’ve goofed
in that, sorry. I’m always bad at this cyclic ordering. So it is equal to J plus. So we take this
important result, we stuff it in there and we have that JZ on J plus beta M is equal to – so this is
going to be J – this is going to be J plus and JZ working on that is going to produce an M times
that. So we’re going to have an M plus 1 times this.

So what does that show, that shows that when you apply J plus to this object you get a
new eigenket of this operator one which has this for a eigen value. So what – let’s write that down
it says that J plus on beta M is equal to M plus 1 – sorry is equal to some amount of which we
will call alpha plus the state beta and M plus one okay. So the point is that what goes in here is
the eigen value of this thing with respect to JZ. So this thing here, this thing here turns out to be
– this shows that it is an eigen ket of this operator with this eigen value M plus 1. So that’s what
should go in there.

And this is some normalising constant. So what have we achieved when we applied J plus
to this state JM we made a new state with the same total amount of angular momentum,
the same response to J squared but the amount of this parallel to the Z axis has increased.
So we have reoriented our system, right we have here a spinning top well okay so angular
momentum along here and we’ve moved it a bit towards the Z axis. That’s what J plus does. It
realigns the angular momentum that you’ve got. Strictly speaking it makes you a new state and
this new state has the same angular momentum as the old state but more of its parallel to the Z axis.

Okay we could repeat all this stuff. I recommend that after the lecture you do repeat all
this stuff using J minus and you will find that J minus on beta M is going to equal some amount
not to be determined, not known yet of beta M minus 1. It does the reverse trick, it moves it away
from the Z axis or if you like towards the minus Z axis. So showing this is precise repeat of what
was done up there except every plus sign gets turned into a minus sign.
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Okay. Now we have that – the expectation value of for example JX squared is equal to JX
up si for any state up si, so take any state up si and work out this expectation value of JX squared.
It’s JX up si mod squared right because if you take the mod – if you take the mod square of this
what you’re taking the hermitian adjoint of this which is that, the hermitian adjoint of JX which
is JX itself and multiply it into this so you end up with this. And this is clearly, this is the length
squared of a vector so it’s greater than or equal to nothing for all up si.

So let’s ask ourselves about JM J squared JM. That’s clearly equal to beta because J square
on to, sorry, M beta M, beta M. So J squared on this produces beta times this, this is correctly
normalised so we get beta. But this can also be looked as beta M JX squared beta M. So it’s equal
to this plus beta M JY squared plus beta M JZ squared. But this, this last one here is clearly M
squared because J – one of these J’s looks at this and produces an M times beta M and the other
one then looks at that and produces another M times beta M and we end up with just M squared.

So what have we got, we’ve got that beta is equal to – well what shall we call this we’ll
call this A and we’ll call this B is equal to A plus B plus M squared where these numbers are
greater than or equal to nought. In other words we concluded that beta is greater than equal to
M squared so there’s a problem. We’ve got an operator J plus which can make us a new state
with M increased by 1 which has – but has – but this new state has the same value of beta. So
apparently we can make states with bigger and bigger M for the same beta and that we’ve just
shown mathematically that that’s absurd, physically it’s absurd because I’m saying that I’ve got a
fixed amount of angular momentum and J plus just moves it towards the Z axis. Well eventually
you’ll have it parallel to the Z axis and it won’t be able to increase M anymore.

So what truncates this something has to give and what – just like the harmonic oscillator
what gives is that eventually – so series of states of bigger M truncated at beta M max for
maximum value of M such that how does this happen? It happens because when we use J plus on
this state we get exactly nothing. So what does this mean? This implies that alpha plus equals
nought in this particular case. That’s the only way we can be stopped from making states of
bigger and bigger M and it’s clear we have to be stopped, so we are stopped in this way. So what
we have to do now is look at the mod square of this, of this state and show that it’s zero. So we
have nought is equal to mod so the mod square of this is going to be this hermitian adjointed
times J plus. Sorry J plus dagger which is J minus times J plus times beta M max.

Right so this thing here, this is J plus dagger which is appearing here and I pointed out
earlier on that J plus dagger is J minus. So let’s have a look and see what we’ve got here by
staring inside. So this is going to be – I don’t need the mod square that’s already taken care of. So
this is beta M max, JX minus I JY, JX plus I JY close brackets beta M max. So we multiply this
stuff out and we get JX squared plus JY squared and then we get, we have a minus I JYX and a
plus I JXY. So we have plus I commutator JX, JY.

Well when we’ve got this much of J squared you might as well have the whole of J squared so we
write this as beta M max J squared minus JZ squared alright. So we add a JZ squared and take it
away again. And this of course is I JZ so along with that I we get minus JZ beta M max. And
now we’re in clover because we know what every single one of these operators produces when it
bangs into that. So we can evaluate this.

This of course produces a beta so this is going to be – this is going to produce a beta
times this thing. Then this thing will meet this thing and produce 1 so I only need to write down
beta. This JZ will produce an M max times this thing which will then bang into this thing and
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produce a 1. So I have a minus M max and this one is going to be produced M max squared also
with a minus sign. So in fact let me write this as – oh never mind M max squared. So this is more
conveniently well alright so what do we have – we have that nothing is equal to this stuff from
which it follows that beta we’ve discovered now what beta is in terms of M max it’s equal to M
max brackets M max plus 1.

So if we apply J minus to beta M I claimed that this was alpha minus beta M minus 1. So
M will start. Let’s imagine M starts off positive as we take units from it it’s going to get smaller
and if we keep going presumably it’ll become negative and M will start to be a growing, a negative
number of growing magnitude. But we still have this condition that M squared is got to be less
than M squared has got to be less than beta. So this series of operations has got to terminate as
well. So series of kets with ever smaller M has to stop. So there must be a minimum value of M
which we imagine will be negative so we’re going to have that beta M min times J well I should
write differently. I should say that nothing has to equal the mod square of J minus applied to
beta M min. And when we expand that out we’ll – they’ll be other things happen and let me –
so in other words nothing is going to be beta M min J plus J minus beta M min. That’s awfully
similar to what we had here when we had a J minus, J plus. So you can see that it’s going to
produce the same stuff except that the sin of the commutators are going to be different otherwise
everything will be the same. So this is going to be nothing is going to be beta min J squared minus
J Z squared plus J Z which is going to lead to the conclusion that beta nothing is going to be
beta minus M min squared plus M min. In other words, beta is also equal to M min M min minus 1.

So we have a relationship here between beta and the largest value that M can take and
between beta and the smallest value that M can take. Now we could, well we can – we can from
these – between these two equations we can eliminate beta and learn that M min squared minus
M min which is this is equal to beta or minus beta equals nought but minus beta is the same as
minus M max, M max plus 1. So we have this equation and this could be thought of as a quadratic
equation for M min in terms of M max, right. So this is a quadratic equation and it tells me that
M min is equal to minus B, well B is minus 1 so it’s equal 1 plus a minus the square root of B
squared minus 4AC. A is 1, C is minus this stuff. So plus 4 M max brackets M max plus 1. All of
the two.

Looks ugly but actually it’s very beautiful because this is going to be a half of 1 plus or
minus the square root of. This – well let me write down what it is and you can tell me whether
you agree with it. It’s M max plus 1 squared. If you square this stuff up you get 4 M max squared
you also get 4 M max from the cross terms, 2 times 2 makes 4. So that’s that and that. And you
also get a 1, that’s that. So we can extract the square root, right because we’ve got the square root
of a square. So we have plus or minus this.

M min is obviously smaller than M max so the plus route can be ignored because that
would tell me that M min was bigger than M max. So only the minus route is wanted and you
soon find that that is equal to minus M max. So there’s a biggest value that M can take and there’s
a smallest value that M can take and we’ve shown that that’s minus the biggest value. In other
words we’ve got a picture like this. We have a biggest value here then we have a next value, then
we have a next value, then we have a next value and suppose that this is the end then zero lies, so
this is a plot with M going up here. So here would be zero say and in this case this would be a
half, this will be three halves, this will be minus a half and this will be minus three halves.

Or it might work out like this that we’d start – but the key thing is we can start slightly
higher up and then we would have this one, this one and this one and this one. So if we started
at 2 we could have 1 nothing minus 1, minus 2. These are the possibilities. But the key thing is
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that I know that in an integer number of steps here 3 steps I could go from the biggest value to the
smallest value. Here there are 4 steps 1, 2, 3, 4. So the key thing is that twice M max is an integer.

Now we could carry on talking about beta and M max but it’s extremely boring and nobody does
that. What they do is they use a new notation. They say that – well the new notation is that J is
what you mean by M max. The biggest value of M is called J, little J. And what have we got,
we’ve got that beta is equal to M max, M max plus 1. That’s on the board just here is therefore
equal to J, J plus 1. And we know that 2 J is an integer in other words J is a half integer or it may
be an even number of half integers in which case it’s an integer itself or it may be an odd number
of half integers.

So in this left hand column J is a half integer. All the values are J – sorry J is a half
integer. Consequently all the values of M are half integers. In the right column J happens to be an
integer and therefore all the values of M are integers.

Therefore this beta number is sometimes an integer so if J is an integer this is an integer.
For example if J – a possibility is that J comes out being nought in which case beta’s nought. Or
J might come out being 1 in which case beta would be 2 or J might come out being 2 in which
case beta would come up being 6. We have a sort of funny selection of integers. But worse than
that when beta is – sorry when J is a half integer the values of beta are really quite weird so we
don’t use beta as the label. So we re-label beta M to JM. Instead of using as the label in here that
tells you how this state responds to J squared. Instead of using the actual eigen value you use this
number which is either an integer or a half integer from which you can work out this eigen value
because this eigen value is J, J plus 1. That is to say we have that J squared on JM is equal to J J
plus 1 JM. And we have that JZ on JM is equal to M of JM. This is the new notation universally
used.

So we change notation only because we’ve discovered that numbers beta are themselves
rather unpleasant and don’t make for handy labels but they are related through this equation to
something that’s very simple which will be an integer or a half integer and moreover tells us
immediately what the largest value of M is that you were allowed to have.

So we have, if J equals 2 there are 5 states there is 2,2 2,1 2,0 2, minus 1 and 2, minus 2.
Now what does that mean, what statement is being made physically it’s being said that if my
pen has 2 units of angular momentum well it has J equals 2 which means as I’ve said it has
strictly speaking J squared has an eigen value of 6, right but if – we call that 2 units of angular
momentum. It has 5 possible orientations, right. This one, this one, this one, this one and this
one only 5. This is what they called space quantisation when Stern and Gerlach discovered this
experimentally. I think it’s a terrible term right it’s not. I wouldn’t call it I think it’s – no I think
it’s a very bad idea to call it space quantisation but I just tell you historically that’s what they
called it. But this is the bizarre conclusion that we have a discrete set of orientations anyway
being possible for a pen with that amount of angular momentum.

If J is a half then what do we have we have a half and a half and a half and minus a half
and that’s it, only two states. So that’s why we’ve been talking about electrons and things, objects
with angular momentum with spin a half, half a unit of spin angular momentum like electrons,
protons, positrons etc as the archetypal two state system because there are only two possible
orientations. Now this is very misleading right but I’ve already given health warnings on this but
the naïve interpretation is that your spin a half particle, your spin a half giro has two orientations,
this one and this one and nothing in between allowed, okay.
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So that is a grossly oversimplified picture which leads to misunderstandings but it gives us
a bit of orientation and people often do think in those terms. In the three halves case we would
have three halves, three halves, three halves, one half, three halves minus one half and three
halves minus three halves. We would have four possible orientations. We’d have this, this, this
and this never pointing horizontally etc etc etc, okay.

Almost done. Let’s have a look at the effect of rotation around the Z axis. Okay so up si
goes to up si primed which is U of Alpha of up si. So any, the. . . These angular momentum
operators came in as the things you put in an explanational in order to generate a rotation, the
unitary matrix that makes you a new system which is the old system rotated. So we want to
see what we get now. So let’s see what happens when we rotate a state of well defined, one
of these eigen states here right. So let’s do E to the minus – so if we go about the Z axis then
alpha only has a component in the Z direction and this becomes and it has a magnitude Fi so
this becomes E to the minus I, Fi is the rotation angle JZ and let’s use that on one of these JM states.

Well this is a function of an operator used on, it’s a function of a operator so by the definition of a
function of the operator it has the same eigen states as the operator whose function it is. So this
thing is an eigen state of this operator and the eigen value is the function on the eigen value. So
this is E to the minus I Fi M JM. So one of these states of – one of these eigen states here when
you make – when you rotate it using this rotation operator produces you the same state multiplied
by this phase factor.

Okay so if we rotate through 2 pi. If we rotate the thing completely around. So if we put
Fi to 2 pi we are looking at – what are we going to call this? We’re going to call this up si primed,
say, right. Up si primed is going to be E to the minus 2 pi I M. Well may be we should say 2M pi
I times what we first thought of.

If M is an integer then – so this E – then this is going to be a number 1. So this is equal
to JM if M is an integer. But it’s equal. To minus JM if M is a half integer as we know it can be.
So we have the surprising result that if you rotate, a system with half integer angular momentum
completely around, complete through an entire rotation its state doesn’t return to its original state,
it returns to minus its original state. And this seems strange to us because we don’t have any
concrete experience, we have no experience of this kind of thing for the following reason that
particles which have even though – yes okay particles which have half integer J. Well particles
are described by fields. Particles that have half integer J are described by fields whose value never
becomes, this is a result of quantum field theory, whose value never becomes large compared to
the quantum fluctuations in the field, the quantum uncertainty in the field.

So the values of these fields never become significant and we have – these fields never
enter classical physics. So the direct field whose excitations are electrons and positrons are – is
not something that’s part of classical physics. It’s a part of the vacuum just the same as electro
magnetic field or the gravitational field but it’s never excited at a macroscopic level so it doesn’t
enter classical physics.

So we have no experience as classical beings within classical physics of the fields associated
with these half integer values of M and therefore are unaware of this fact that if you turn the
thing completely around it changes its sign. And the fields we do have experience of the electro
magnetic field and the gravitational field belong to integer values of M, the electro magnetic field
has M, well has J rather equal to 1 and the gravitational field has J equal to 2 and therefore these
fields don’t manifest this strange behaviour.
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Well I think that is the right place to stop even though it’s a little early and we will look
at the rotating molecules as a physical application on Wednesday.
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