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Contributor Okay, let’s get going. So, on Friday we used the commutation relations that we had
deduced for the angular momentum operators to find what the spectrum of j squared, and any one
of the js, for example jz, could be. And now we can use this information to understand . . . to
interpret the spectra, the infrared, the near infrared and terahertz spectra of diatomic molecules,
which are very common. They’re in the room here, O2 and N2; much of the mass of the barriers
of the universe is contained in H2 and, from a practical point of view, a very important molecule,
for reasons I’ll explain, turns out to be carbon monoxide, CO.

So a molecule like this consists, for our purposes, of two masses, being the nuclei, for example,
of the oxygen and the carbon, on a light spring. So we have two massive nuclei and a light spring
formed by the electrons, and this is capable of being a simple harmonic oscillator in that it does
this, but also, at lower energies, it’s capable just of rotating, end over end as a dumb bell and
having rotational kinetic energy.

So, if you go to classical mechanics and ask yourself what is the energy of this thing? The energy
of this thing is given by the classical angular momentum around the x-axis squared over twice
the moment of inertia around the x-axis plus the classical angular momentum squaredaround
the y-axis over twice the moment of inertia, around the y minus axis plus the classical angular
momentum squaredover two iz. So this is reminiscent of, this is a piece of classical physics that
the kinetic energy of a moving particle is P squared over two m so this is classical mechanics.

Classical mechanics. And those who did short option seven, will, I hope, recognise this formula.
So we have angular momentum, x component here, instead of x component of linear momentum,
divided by moment of inertia around the x minus axis, instead of divided by mass. So this is what
the classical expression for the energy of a thing like this is.

So what we say now, we conjecture, that quantum mechanically, we put jx, the classical thing,
goes to h-bar times jx, the operator. So we define these operators . . . many people define them
to have dimensions of h-bar, but we would define them so they were dimensionless. This thing
has the dimensions of h-bar so we make this transformation, we take this classical expression
and we turn it into h-bar times the quantum mechanical operator etc., and then we infer that the
Hamiltonian should be h-bar squaredover two, jx the operator squared over ix, I’ve taken that out,
plus jy squaredthe operator over iy plus jz squaredover iz. So these are operators now.

So you should think of this as a guess. It will be confirmed by experiments to be shown soon.
Now we say if, for this diatomic molecule, we take the z-axis to be the symmetry axis of the
molecule, that’s the axis that runs through both nuclei. And then the moment of inertia around
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that axis, around that now z-axis, is negligible because all the mass in this molecule is almost
entirely contained in these nuclei which are very close to being point particles. And if you rotate
it around this axis, those nuclei provide very little moment of inertia.

The electrons could provide a certain amount of moment of inertia, so it’s possible for the electrons
to have some angular momentum around this axis and in some molecules they do, but in most
molecules they don’t. So, the moment of inertia is, in any case, very small so this implies that iz
is very much less than iy, than ix, which is the moment of inertia about an axis and it sticks out
here whether . . . if you spin it around there, the two nuclei go around in a decent circle of radius
half the length of that bond, say. And, for a diatomic molecule [[asymmetry 0:06:00]], ix
is going to equal iy.

So given that ix equals iy, it’s natural to re-write this Hamiltonian as h equals h-bar squaredover
two, brackets, j squared, which is jx squaredplus jy squared plus jz squared divided by ix, which
equals iy. So these first two I’ve combined together into here. I’ve now, in here, also got a jz
squared over ix, which I don’t really want, so I simply get rid of this jz squared, (one over iz,
minus one over ix). So this is just a repackaging of that expression to group together the terms
which have a common factor one over ix.

And now, the beauty of this is that we know what the eigenvalues of this operator are and what the
eigenvalues of this operator are, so we can immediately say what the eigenvalues of this operator
are. So this says, immediately, what the spectrum of h is: ejm, which is going to be h-bar squared
over two, brackets, j, j plus one, because remember we showed the eigenvalues of this were j, j
plus one, where j is allowed to be an integer or a half integer divided by ix plus m squared one
over iz, minus one over ix.

So because the Hamiltonian for this rotating system is simply a function of the angular momentum
operators, and because we have already found out what the spectrum of the angular momentum
operators is, we can immediately say what the spectrum of the Hamiltonian is, i.e. we now know
what the allowed energy levels are of these rotating molecules. Almost no further investment of
effort.

Now, we know that m lies in the range minus j, less than or equal to m, less than or equal to j,
that was one of the things we showed on Friday, so this number is generically of the same order as
this number, but this one over iz, I’ve explained, is a very much bigger number; iz is a very much
smaller number than ix, so this number is very much bigger than this number, which is the same
as one over this number here. So the coefficient of m squared is huge. That means that if n were
anything other than zero, the energy would be enormous.

So if you’re dealing with the molecules in the room or in inter stellar space or somewhere where
they only have moderate amounts of energy, we can argue that this thing is going to be zero. So
this number here is very large, I mean it really is huge because iz is so very small for a diatomic
molecule, which means that this is always zero. That’s just saying that these molecules have their
own momentum around an axis which is perpendicular to their symmetry axis. So that means that,
effectively, the energy levels are simply ej, h-bar squared, over two ix times j, j plus one.

So those are the energy levels, now that’s all been totally generic for diatomic molecules. Let’s
now talk about carbon monoxide.

Carbon monoxide has a much more interesting spectrum, a much more easily observed electro-
magnetic spectrum because the carbon is slightly positive and the oxygen is slightly negative . . .
I’ve lost this. Right, oxygen has a great affinity for electrons, so it borrows some of carbon’s
electrons and ends up being a little bit negative. This is a little bit positive, so a carbon monoxide
molecule, which is spinning end over end, is a rotating dipole, an electric dipole. So CO, this is
plus, this is minus, will be a rotating electric dipole.

The same will not be true of a hydrogen molecule because obviously the two hydrogen atoms
will have equal affinity for electrons and so neither will be charged. Or an oxygen molecule, or
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a nitrogen molecule, all of these molecules are not dipoles so they can rotate without emitting
electromagnetic radiation. But if a carbon monoxide molecule is rotating, it will emit, or
potentially absorb, electromagnetic radiation at some frequency which we would imagine would
be the frequency at which it rotated end over end, right, classically, that would make sense.

A rotating dipole should emit or absorb radiation at the frequency that it rolls over. Let’s see
whether that’s true, according to quantum mechanics.

So, it will emit or absorb E-M radiation and the angular frequency, let’s have the frequency, so
the frequency is going to satisfy nu equals Ej minus Ej minus one. Sorry, another point: photons
carry one unit of angular momentum it turns out, right, not more, not less. So a photon can move
a molecule which has a total angular momentum j, which has a state which has a total angular
momentum j minus one or j plus one, but it can’t move it to j plus two or J plus three, it can only
move it by one unit in j, because it’s only got one unit of angular momentum and by conservation
of the angular momentum of the photon plus the molecule, right, so you can or destroy the photon
or create the photon so you can add the angular momentum of the photon into the molecule or you
can dump into a photon one unit of angular momentum and hence make one step like this.

But only adjacent js can be moved to, and this is the key point, by interaction with electromagnetic
radiation. So we’re going to have, with nu, the energy of the photon equals the difference in the
energies of the molecule between the excited state it started and the state it finished and what’s
that going to be according to this formula here? That’s going to be h-bar squared over two ix,
brackets, j, j plus one, minus this same expression with j put equals minus one, so it becomes j
minus one times j and I think you can see that this cleans up very nicely to two j, so we end up
with h-bar times j over ix. [[Mobile phone rings]] I think somebody must have a call.

What does that tell us about nu? It tells us that nu maybe should go to subscript j to indicate that
it’s the frequency which will be emitted as it goes from a state j to j minus one. We can cancel one
of the h-bars, well, this is an h, not an h-bar, so this becomes equal to h-bar j over two pi ix. So,
according to quantum mechanics, that’s the frequency of emitted light.

Can we reconcile this with our classical picture? So, how fast was the molecule going around? So
classically we can say that the angular momentum jx equals ix times omega; this is the angular
frequency of the tumbling, of the rotation. So this is a piece of classical mechanics again; the
relationship between angular momentum and frequency . . . this is like the relationship between
momentum . . . so this mirrors the classical statement that px equals m times x dot; omega is x.
rate of change of angle, I mean is the analogue of x dot; this is the rate of change of position, that’s
the rate of change of angle, I’ve already said that moment of inertia plays a role a bit like mass
and this momentum plays the role of . . . right, so that’s where this thing comes from. It’s just a
piece of classical physics.

So when you are in a state . . . so what do we think that omega should be? Omega should be on
the order of; well it should be equal to jx over ix, that’s classical. Doing it quantum mechanically,
this is going to be h-bar times the square root of j plus one, so this is a heuristic sort of thing.
Supposing its angular momentum is along the x-axis, right, then jx squared is going to be on the
order of h-bar squared, j j plus one; jx squared is going to be on the order of j squared which will
be this, divide through by ix.

And we want to relate this to the frequency we had up there, a factor of two pi. . . what have I done
wrong? Oh, it’s because this is the angular frequency, that’s the actual frequency, right? So this is
equal to two pi frequency of . . . this was angular frequency, this will be frequency of rotation. So
we have the frequency of rotation we expect to be h-bar over two pi ix times the square root of j, j
plus one.

So this is going to be, so what can we say? This is slightly bigger, this is greater than . . . just a
bit, if j is a larger number it’s only a smidgeon bigger than h-bar j over two pi ix. So, in its upper
state when it had total angular momentum, j, j plus one, h-bar squared, the rate at which it was
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tumbling was a bit larger . . . this is the frequency of emitted light, sorry, this is nu j from above.
So in its upper state, its rate of tumbling, on this classical picture, will be slightly larger than the
frequency with which it emits the light and you can check that in its lower state we would have a
minus sign here, a minus one, so just a bit below the frequency which emits the light.

So the light is, in fact, emitted at just the average of the expected rotational or tumbling rates at
the upper and lower levels which makes, I think, perfectly good physical sense.

So in lower state, that’s when j, well, ej minus one, tumbling rate, is just a bit lower. Oh no, this
thing, it’s gone to sleep again. It’s not my computer that’s gone to sleep; it’s the wretched lecture
room that’s gone to sleep. It’s too irritating. We must get it to stop doing this. I really do want to
show you something today. Is it coming back? Okay, right.

So this is the actual experimental spectrum of carbon monoxide so this is in gigahertz, so this is
two terahertz, three terahertz along there, and you have a line here, there’s a line being drawn of
the frequency measured associated with the transitions from j equals one, to j equals nothing.

So you get photons out with this frequency which is almost but not quite twice the previous
frequency according to this mathematics we’ve done so far, the next frequency up should be
exactly twice . . . this frequency here should be exactly twice that frequency there and you can’t
tell the difference, actually, on this plot, and so on and so forth. So you get each line, here, is
telling you the measured frequency of a spectral line from these carbon monoxide molecules and
you can see that they do form a regular grid, just like this says. So this is the transitions from one
to nothing, this is the transitions from two to one, this is three to two and so on and so forth. And
if we go up here this is . . . I don’t know, can’t count, ten to nine or something, right?

There are a couple of missing lines in here where somebody hasn’t published a measurement
or something. The other interesting thing to note . . . so that even spacing is confirming this
frequency, nu j is proportional to j business. And that’s the interpretation. There’s another
interesting to notice here, which is that as you go along here, the black lines get slightly to the
left of the dotted lines and the dotted lines are exactly at multiples of the frequency of this lowest
transition – j equals one to nothing.

So what’s happening is that the measured frequencies almost conform to this rule up here, but not
quite. They turn out to be slightly smaller than the number nu j given up there and the physical
interpretation of that is interesting, it’s that nu measured, minus nu j is slightly negative, if you
like. And that’s because nu measured is equal to, well this is what you would think classically, is
equal to h-bar over two pi j over ix, which itself is a function of j.

So if you’re firing in circularly polarised photons and making this molecule spin faster and faster
end over end, obviously the centrifugal force will stretch that spring out a bit – the spring is stiff
but not infinitely stiff so if you’re swinging it faster and faster, the centrifugal force pulls the spring
longer, increases the distance between the nuclei and in that way increases the moment of inertia.
So this moment of inertia that’s appearing on the bottom of this formula should really be itself a
function of j which increases. So some of this increase here is cancelled by a slight increase in the
bottom and that’s the interpretation anyway, of these spectral lines falling behind the measured
numbers, which are the black lines, falling behind the perfectly evenly spaced grid of dotted lines.

So one of the problems on the problem set is to use this phenomenon to estimate how stiff this
spring is because you can calculate using classical physics, you can calculate what this force is,
the centrifugal force. You know how fast the molecule is going around so you can calculate what
v squared over r is, which is the force pulling the spring. From the change in the spectral line
frequency, you can estimate the change in moment of inertia – so you have a given force, a given
displacement so you can work out the spring constant.

Then you can check, you can make a prediction of what the frequency is at which the carbon and
the oxygen would oscillate in and towards each other using the spring, all right, which occurs at a
different part of the spectrum and so that’s what that problem is about.
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So I think that’s all . . . there are other nice things you can do with carbon monoxide molecules,
but I think we’ll leave it at that because we have an important additional item to put on the agenda
which is orbital angular momentum. Maybe we should put it over here.

Classically, we know what angular momentum is for a particle . . . well, let’s be careful. So
the world, the earth, has angular momentum about the centre of the sun for two reasons. One is
that it’s moving around the sun once every year and that motion contains a great deal of angular
momentum and the other is it’s spinning on its own axis, which accounts for a slightly smaller
amount of angular momentum, and orbital dynamics are very much involved with the interchange
of angular momentum between orbital motion and spin motion and so on. It’s the same quantity.

It’s exactly the same on atomic scales or whatever and, as I’ve said, electrons and protons and
neutrons are all gyros that, like the earth, they spin on their own axis, but of course they also move
around and in moving around, they have angular momentum. So we, at the end of last term, we
introduced these angular momentum operators, by very general considerations to do with what
happened when we generated the operators that were generating nu states which gave us system
just like our old system except rotated through some angle.

That, apparently, has nothing to do with angular momentum as classically conceived so in classical
physics we have a thing, orbital angular momentum which is going to be given by l is equal to
x, cross p, so this is classical physics. This is classical orbital . . . so this describes the angular
momentum of the earth about the centre of the sun, by virtue of the motion of the earth around the
centre of the sun, where p is the momentum of the sun in a frame of reference in which the sun is
stationery.

Right, so we can define an operator. So, in quantum mechanics, by analogy with this, it’s natural
to define an operator, l hat, which is equal to one over h-bar, x hat, cross p hat. Let’s write that out
in components to make sure we know what we’re doing. That’s one over h-bar, the sum epsilon,
ijk xi . . . which way round do I want to do this? It doesn’t actually matter which way round I do
it, but for consistency I should try to keep it the same as we have here. Yes, so that’s consistent
with what was down in the book. So this is summed over j and k.

So, things to notice. One is, we put a one over h-bar in here to make this thing dimensionless. It’s
a close call whether you should make it dimensionless or not, most people probably don’t have it
dimensionless. I think, on balance, you’re better off having it dimensionless and we introduced
the angular momentum operators in such a way that they were dimensionless; they didn’t have an
h-bar which made our formulae simpler. So for consistency we need to make these dimensionless,
right? So this has dimensions of this and therefore this ratio is dimensionless.

Does this make sense? Do we have to worry about the order in which we write down x and p?
In classical physics, we clear don’t. In quantum mechanics you would think you would have to
worry about the order; does it matter whether this is xp or px? Well, it doesn’t matter because in
this sum, the only terms which occur are when the subscript on the x is different from the subscript
on the p because this epsilon symbol, remember, vanishes if any two of its subscripts are the same.

So for example, we have an lx is equal to one over h-bar, the sum over j and k of epsilon ij epsilon
xjk xjpk. So j’s sums goes over x, y and z, but when it’s x you get nothing here, so there are
only two places to consider when it’s y and when it’s z and when it’s y we don’t need to consider
the possibilities that k arrive at x or y because this will vanish if k is either x or y, so this is one
over h-bar of x, sorry, xy which is y hat pz minus z hat py. So that’s how it will work out. These
two operators commute and these two operators commute so it doesn’t matter about the order. So
order’s not important.

Lx is also going to be a Hermitian operator because if we take the dagger of this, right, the dagger
of this equation, we will have the dagger of, well, let’s do it. Lx dagger is going to be one over h-
bar – the rule is, when you take the Hermitianal joint you have to reverse the order of the operators,
so it’s going to be p dagger zy dagger minus py dagger z dagger, these things are all operators.
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But each of these things is its own dagger because the momentor and coordinates are Hermitian
operators and the order in which you write them down, we’ve already agreed is unimportant, so
this is in fact equal to lx. So it’s a Hermitian operator.

So we expect it to be associated with an observable and the observable is obviously going to be
orbital angular momentum. That done . . . one more thing, we introduce, by analogy with angular
momentum, we introduce a new operator, l squared, which by definition is lx squared plus ly
squared, plus lz squared. Again, it will be Hermitian because lx is Hermitian so lx squared is
Hermitian, right, so this is another Hermitian operator.

The next thing to do is to work out some commutation relations now that we’ve defined these
operators, defined what commutation relations we have. Let’s do li xl, well mind if I leave off these
hats now, we’re thoroughly stuck into quantum mechanical operators. So what’s this commutator?
Well, we should write in what this is. This is epsilon ijk xjpk, this will be summed over j and k,
so this is this, commutator on xl.

So this is the commutator of an operator with a product, so in principle there are two terms. There’s
this thing stands idly by while that commutes with that and then there’s this thing stands idly by
in the back while this commutes with this, but obviously the xs all commute so forget that. So we
only have to consider this commutator, so this is equal to the sum epsilon ij jk of xj standing idly
by while we do the commutator pk xl. But this is minus i h-bar delta kl.

So we have minus i . . . sorry, I’m missing here one on h-bar, am I not? Because one up on h-bar
of this product. So we have one on h-bar here. Then, this generates a minus i h-bar – the h-bars
cancel, the minus i sticks around and is a pain, times epsilon ijk xj delta kl. This is still summed
over j and k. When we sum over k, this becomes an i, so this becomes minus I summed over j
of epsilon ijl xj and we can get rid of this unattractive minus sign by swapping the order of these
two, right? So we can write this as plus i, the sum over j of epsilon ilj xl. So let me just write in
the left side again, so we can appreciate the pattern that we’re getting.

The commutator of li with xl is i times epsilon il, these two letters being those two letters, sorry . . .
this was summed over j. So between here and here I’ve merely reversed the order of the subscripts
on the epsilon dealing with the minus side. Now this is exactly the same as a result we already
had, so we need to recall at this point that ji, xl is equal to i sum over j epsilon ilj xj. So the
commutator of this orbital angular momentum operator with this position operator is the same as
the commutator of this total angular momentum operator with the position operator.

Similarly, just the same calculation, a precisely analogous calculation implies that li, pl, if we just
sit down and calculate this in exactly this way, we will find it is ri sum over j of epsilon ilj pj which
mirrors and there’s an analogous relationship between j and p.

The next thing to calculate is: so what’s i, lj? We’ve introduced a family of three operators, we
should investigate what the commutation relations are between any two of them. So we know
what the answers are in the case of the angular momentum operators ji jj, is i epsilon ijk jk. So
this is setting us up for expecting what the answer is here.

Okay. In order not to . . . so it’s an exercise that I would encourage you to do just to work it out as
it stands, but I’m now going to do a simpler calculation, just one component. There’s a question
mark associated with this, it’s a good exercise to do that but it’s slightly complicated to do it in the
general case. So let’s do something that’s slightly similar, let’s work out what lx,ly is.

So what do we do? What we do is replace one of these, shall we say this one, by its expansion in
terms of x and p. So this is going to be one over h-bar of lx, ly. So what is ly? Well, ly must be,
I think, zpx minus xpz. All right, so this product divided by h-bar is that if I’ve not got my signs
wrong. And we know now how lx commutes with this and how lx commutes with that so we can
work it all out. S this is going to be one on h-bar, open a big bracket, of lx commuted with z, with
px standing idly by, plus z standing idly by, lx commuting with px minus lx commuting with x
and pz standing idly by minus x standing idly by, while lx works on pz.
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The easy terms here are this and this, because they’re what? Zero, right. Because this would be
epsilon xxk, that vanishes. Similarly here. So these two are nice and equal to zero and these two
we have to work out using horrible cyclical everythings, so this is going to be minus. . . so lx
commuted with a component of x is going to produce i times the third component which will be
y and I think we’ll probably get a minus sign. So I think this will be one over h-bar, brackets, and
there’ll be an i, sorry, an i, and I think we’ll have a minus i times y from here, times px and this
was zero, this was zero.

This is the other interesting one, it will be the same thing – this commuted with this will be minus
py. So we have two minuses, so we’ll have a plus ix py, so this is equal to i over h-bar of xpy
minus ypx, which, this h-bar and this stuff together make lz so it’s ilz.

So, in summary, this again mirrors the result we saw with the total angular momentum operators,
this is one component of . . . I’m going to now write down the answer for that calculation up there
without proving it. But you can see that it’s going to happen: li, lj is i summed over k of epsilon
ijklk. So, let me repeat a result we’ve already got: li xj is equal to i epsilon ijk xk. So, l commuted
with any component of a vector produces i times the third component of the vector and that rule
even works for l itself which is itself a vector, all right? So we regard this as analogous to this
relationship here because we also had that li, pj is equal to i epsilon ijk pk.

The point is that what goes in here for l to work on can be any vector, a component of any vector,
and then you always get out i times the other component of the vector that you put in here. So
here also we get out i times the other component of the vector that we put in here, which in this
case was l itself. This is mirroring precisely, so these results exactly the same. If you replace all
of those ls with js, everything remains true.
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