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Large population games: traffic routing

• Traffic subject to congestion delays

• cars and packets follow shortest path

• Congestion game =cost (delay) 
depends only on congestion on edges

Traffic streams change 
e.g., popular sites may change
Changes in system setup



Repeated games
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• Player’s value/cost additive over periods, while playing
• Players try to learn what is best from past data
What can we say about the outcome? Part I
How fast do they learn well enough: Part II (how long do they have to stay)



Nash as Selfish Outcome ?

Can the players find Nash?

Which Nash?

They need too much information! 

Correct belief about behavior of all market participants!

takes time …

Daskalakis-Goldberg-Papadimitrou’06

Nash exists, but ….

Finding Nash is 
• PPAD hard in many games



Nash equilibrium of the one-shot game?

time

Nash equilibrium of the “one-shot” game: Stable actions a
with no regret for any  alternate strategy 𝑥:

𝑐𝑜𝑠𝑡𝑖 𝑥, 𝑎−𝑖 ≥ 𝑐𝑜𝑠𝑡𝑖 𝑎

But players are not this steady

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

a1

a2

an

…

No regret

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Days

N
or

m
al

iz
ed

 B
id

Bids on bing.com



Learning outcome
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Maybe here they don’t 

know how to play, who are 
the other players, …

By here they have a 
better idea…



No-regret without stability: learning 
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No regret: for any fixed action 𝑥:
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regret
(cost ∈ [0,1]):



Today: approximate no-regret

For any fixed action 𝑥 (with d options) : 

σ𝑡 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤ σ𝑡 𝑐𝑜𝑠𝑡𝑖(𝑥, 𝑎−𝑖

𝑡 ) + 𝑇𝑙𝑜𝑔 𝑑

In fact, much better bound applies! 

Foster, Li, Lykouris, Sridharan, T NIPS’16
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𝑐𝑜𝑠𝑡𝑖 𝑎
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Same algorithms! MWU (Hedge), Regret Matching, etc.

T=time, d=# strategies 



Quality of Learning and the Price Anarchy
Price of Anarchy [Koutsoupias-
Papadimitriou’99]

𝑃𝑜𝐴 = max
𝑎 𝑁𝑎𝑠ℎ

𝑐𝑜𝑠𝑡(𝑎)

𝑂𝑝𝑡
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Assuming no-regret learners in stable 
game: [Blum, Hajiaghayi, Ligett, Roth’08, 
Roughgarden’09]

𝑃𝑜𝐴 = lim
𝑇→∞

σ𝑡=1
𝑇 𝑐𝑜𝑠𝑡(𝑎𝑡)

𝑇 𝑂𝑝𝑡



Smooth games [Roughgarden’09]

Game is (λ,μ)-smooth (λ > 0; μ< 1): 

if for all strategy vectors 𝑎 and an optimal solution 𝑎𝑖
∗

෍

𝑖

𝑐𝑜𝑠𝑡𝑖(𝑎𝑖
∗, 𝑎−𝑖) ≤ 𝜆 𝑂𝑃𝑇 + 𝜇 𝑐𝑜𝑠𝑡(𝑎)

A Nash equilibrium a has

Most price of anarchy bounds via smoothness proofs: congestion 
games, simple auctions
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cost(a) ≤ 
𝜆

1−𝜇
Opt



Examples of “smoothness bounds”

• Monotone increasing congestion costs (1,1) smooth 

 Nash cost ≤ opt of double traffic rate (Roughgarden-T’02)

• affine congestion cost are (1, ¼) smooth (Roughgarden-T’02)

 4/3 price of anarchy

• Atomic game (players with >0 traffic) with linear delay (5/3,1/3)-
smooth (Awerbuch-Azar-Epstein & Christodoulou-Koutsoupias’05)

 2.5 price of anarchy

Resulting bounds are tight



Smooth games and learning

no-regret learning results in sequence 𝑎𝑡 : 

player i would do action 𝑎𝑖
∗ in optimum
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A cost minimization game is (λ,μ)-smooth (λ > 0; μ< 1):

recall: 𝑅 = 𝑂( 𝑇 log 𝑑)

 Additive error O(
n

𝑇
⋅ 𝑙𝑜𝑔 𝑛)
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Speed of Convergence ?
Use approx no-regret learning: 

σ𝑡 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤ (1 + 𝜖)σ𝑡 𝑐𝑜𝑠𝑡𝑖 𝑎𝑖

∗, 𝑎−𝑖
𝑡 + 𝐴𝑅

A cost minimization game is (λ,μ)-smooth (λ > 0; μ< 1):

A approx. no-regret sequence 𝑎𝑡 has

𝐴𝑅 =
log 𝑑

𝜖
, so error  
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No-regret: how good is this as a model of learning?

time

For any fixed action 𝑥 (with d options) : 

σ𝑡 𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤ (1 + 𝜖)σ𝑡 𝑐𝑜𝑠𝑡𝑖(𝑥, 𝑎−𝑖

𝑡 ) +
log d

𝜖

Pro: 

• No need for common prior or rationality assumption on opponents (takes advantage if 
opponents play badly!)

• Behavioral assumption: if there is a consistently good strategy: please notice!

• Algorithms: Many simple rules ensure approx. regret log 𝑑/𝜖 , and regret ~ 𝑇𝑙𝑜𝑔 𝑑 for 
all x , Hedge, Regret Matching, Follow the perturbed leader

Idea: choose at random: outcome good increase prob. Outcome bad decrease prob.
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Do players really learn? 
Nekipelov, Syrgkanis, T, EC’15
• Data from Microsoft Ad-Aution: 9 frequent bid changing advertisers

Value of advertiser?

Half the advertisers have <10% regret, 30% have <0 regret!
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Slowly changing game: 
[Lykouris, Syrgkanis, T. ‘16]

Dynamic population model:

At each step t each player i

is replaced with an arbitrary new player with probability p

In a population of N players, each step, Np players replaced 
in expectation

17



Need for adaptive learning

Example: (matching)

• Strategy = choose an item

• Best “fixed” strategy in hindsight very weak in changing 
environment

• Learners can adapt to the changing environment 
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Result (Lykouris, Syrgkanis, T’16) :

In many games we bound average welfare close to Price of Anarchy

even when the rate of change is high, 𝒑 ≈
𝟏

𝐥𝐨𝐠 𝒏
with n players

assuming adaptive no-regret learners

- Worst case change of player type   need for adapting to changing 
environment

- Sudden large change is unlikely

19



Summary so far:

Player populations using no-regret learning do well even in 
dynamic environments
• Learning guarantees high social welfare in smooth games in the limit
• Stable approx. solution + good PoA bound  good efficiency with dynamic 

population

Low regret error guarantees fast convergence to high social welfare, and 
allows for higher population turnover

We need broad classes of learning algorithms, to make learning a good 
behavioral assumption!

20



Low approximate regret without full info?

Do we need full information feedback to achieve: 

෍

𝑡

𝑐𝑜𝑠𝑡𝑖 𝑎
𝑡 ≤ (1 + 𝜖)෍

𝑡

𝑐𝑜𝑠𝑡𝑖 𝑎𝑖
∗, 𝑎−𝑖

𝑡 + 𝐴𝑅

Today: learning to for low approximate regret with partial feedback

joint work with Thodoris Lykouris and Karthik Sridharan



Partial information feedback: bandits

• Focus on one player: 𝑐𝑡 𝑥 = 𝑐𝑜𝑠𝑡𝑖 𝑥, 𝑎−𝑖
𝑡

• Classical bandit model: 0 ≤ 𝑐𝑡 𝑥 ≤ 1, get 𝑐𝑡 𝑥 only on 𝑥 selected

• Partial feedback (Mannor and Shamir NIPS’11, Alon et al NIPS’13): 
graph feedback:

each node: an option 𝑥

choosing 𝑥, 

see feedback for 𝑁(𝑥)

x



Partial feedback: importance sampling: 
reduction to full information

• Use a full information algorithm with modified cost:

cost ǁ𝑐𝑡 𝑎 = 0, if a not selected

= 𝑐𝑡(𝑎)/𝑝𝑎
𝑡 if a is selected, and had probability 𝑝𝑎

𝑡

• Any fixed 𝑎 expected cost 𝐸(σ𝑡 ǁ𝑐𝑡(𝑎)) = σ𝑡 𝑝𝑎
𝑡 ǁ𝑐𝑡 𝑎 = σ𝑡 𝑐

𝑡(𝑎)

• Imagine full information algorithm on ෥𝑐𝑖
𝑡 𝑎

Expected cost is 𝐸(σ𝑎 𝑝𝑎
𝑡 ǁ𝑐𝑡(𝑎)) = σ𝑎 𝑝𝑎

𝑡𝐸( ǁ𝑐𝑡(𝑎)) = σ𝑎 𝑝𝑎
𝑡𝑐𝑡(𝑎)

 Full information bound on costs ǁ𝑐𝑡 𝑎 applies to bandit feedback…



Reduction to full information, part 2

Recall:      cost ǁ𝑐𝑡 𝑎 = 0, if a not selected

= 𝑐𝑡(𝑎)/𝑝𝑎
𝑡 if a is selected, and had probability 𝑝𝑎

𝑡

Trouble: max ǁ𝑐𝑡 𝑎 = max 1/𝑝𝑎
𝑡 = ∞

approx. regret was: 
ln 𝑑

𝜖
max
𝑎,𝑡

𝑐𝑎
𝑡

• Classical solution:

add a bit of random noise: keep 𝑝𝑎
𝑡 ≥ 𝛾 for some parameter 𝛾

regret bound of T𝛾, not low approximate regret

• Proposed solution:

freeze  arm if 𝑝𝑎
𝑡 < 𝛾. Do not select, and do not update!



Bandits with freezing

• Use probability ෤𝑝𝑎
𝑡 = 0 if 𝑝𝑎

𝑡 < 𝛾

෤𝑝𝑎
𝑡~𝑝𝑎

𝑡 if 𝑝𝑎
𝑡 ≥ 𝛾

Need to make sure that σ𝑎:𝑝𝑎
𝑡<𝛾 𝑝𝑎

𝑡 ≤ 𝜖, e.g., use 𝛾 ≤
𝜖

𝑑

• Any fixed 𝑎 expected cost 𝐸(σ𝑡 ǁ𝑐𝑡(𝑎)) = σ𝑡 ෤𝑝𝑎
𝑡 ǁ𝑐𝑡 𝑎 ≤ σ𝑡 𝑐

𝑡(𝑎)

estimator is negatively biased!

• Full info expected cost is 𝐸(σ𝑎 𝑝𝑎
𝑡 ǁ𝑐𝑡(𝑎)) = σ𝑎 𝑝𝑎

𝑡 𝑐𝑎
𝑡 ≈ σ𝑎 ෤𝑝𝑎

𝑡 𝑐𝑎

 full information bound applies with costs ≤
1

𝛾



Benefit with freezing as a learning method

• Small and natural change for any full information algorithm. 

• Black box reduction to bandit feedback

• Results in small approximate regret, and “small loss bound” on regret

Extends to shifting comparator: probability is never too small to recover! 

Regret of adaptive learning is bounded by 𝑘 log 𝑑 /𝜖

with respect to any sequence that changes k times



Freezing and partial feedback

• Partial feedback (Mannor and Shamir NIPS’11, Alon et al NIPS’13): 
graph feedback:

each node: an option 𝑥

choosing 𝑥, see feedback for 𝑁(𝑥)

• Graph complete = full information: we have O(
log 𝑑

𝜖
)

• Graph empty = bandit: we have O(
𝑑

𝜖
)

x



Learning with Partial feedback

Theorem (Lykouris-Sridharan-T’17): using freezing we can approximate 
regret bound of 𝑂(𝛼 𝐺 log 𝑑 /𝜖2), where 𝛼 𝐺 is the max 
independent set in G



Learning with Partial feedback

Idea: 𝑝𝑎
𝑡 probability arm 𝑎 is played

𝜋𝑎
𝑡 = σ𝑏∈𝑁(𝑎)𝑝𝑏

𝑡 probability arm 𝑎 is seen

Importance sampling: update cost of all arms seen

cost ǁ𝑐𝑡 𝑎 = 0, if a not seen

= 𝑐𝑡(𝑎)/𝜋𝑎
𝑡 if 𝑎 is seen

Freeze arms with 𝜋𝑎
𝑡 too small



Importance sampling with partial feedback

freeze arms with 𝜋𝑎
𝑡 < 𝛾

• Any fixed 𝑎 expected cost 
𝐸(σ𝑡 ǁ𝑐𝑡(𝑎)) = σ𝑡(σ𝑏∈𝑁(𝑎) ෤pb

t ) ǁ𝑐𝑡 𝑎 ≤ σ𝑡 𝑐
𝑡(𝑎)

estimator is negatively biased due to freezing

• Full info Expected cost is     𝐸(σ𝑎 𝑝𝑎
𝑡 ǁ𝑐𝑡(𝑎)) = σ𝑎 𝑝𝑎

𝑡 𝑐𝑎 ≈ σ𝑎 ෤𝑝𝑎
𝑡 𝑐𝑎

 full information bound applies with costs ≤
1

𝛾

Question: how large can we keep 𝛾?



Freezing arms with prob 𝜋𝑎
𝑡 too small

• Use 𝛾 =
𝜖

𝛼(𝐺)

Step 0. Freeze all arms with 𝜋𝑎
𝑡 ≤ 𝛾

Lemma: total probability frozen in step 0 at most 𝛼 𝐺 𝛾 = 𝜖

Proof: consider set of frozen arms A

Max independent set 𝐼 ⊂ 𝐴

All node in A seen by a node in I



Freezing arms with prob. 𝜋𝑎
𝑡 too small (cont.)

• Update ෤𝜋𝑎
𝑡 = σ𝑏∈𝑁(𝑎) ෤𝑝𝑏

𝑡

• This now makes other arms seen with small probability…

Steps 1, 2, 3,… Recursively freeze all arms with ෤𝜋𝑎
𝑡 ≤ 𝛾/3

Lemma: total probability frozen in steps 1,2,… at most 3𝜖

Proof: 

Node a frozen in step 1: 𝜋𝑎
𝑡 > 𝛾 and ෤𝜋𝑎

𝑡 ≤ 𝛾/3

 Seen by >
2

3
𝛾 probability in step 0, 

Step 0 has total probability only 𝜖 and each node 

only seen with probability ≤ 𝛾

 total at most O(𝜖)

a

≤ 𝜖 ≤ 2𝜖/3



Conclusions

Learning in games:
• Good way to adapt to opponents
• No need for common prior
• Takes advantage of opponent playing badly.
• Simple strategies guarantee low approximate regret in full 

information as well as with partial information

Learning players do well even in dynamic environments
• Stable approx. solution + good PoA bound  good efficiency with 

dynamic population
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